Instantiating the Memory Interface Generator
-Add new source
-IP Cores -> MIG
[image:]
- Select Create Design
[image:]
-Pin Compatible FPGAs: There are no other FPGA with compatible pins (you are only using the design on the starter kit anyways). Leave everything unchecked.
-Memory Selection: DDR SDRAM should be selected

-Controller Options: Change Memory Part to be MT46V32M16XX-75 (memory is actually -6T but that isn't a choice, so we have to run it slower). The data width on the part is 16-bit, so select a 16 bit data width. We do not need a data mask, so you can uncheck this box.
[image:]

-Memory Options: Defaults
[image:]

-FPGA Options: Make sure DCM is checked (Note, if you set clock to Single-Ended instead of Differential you only get one clock input .sys_clk_in rather than sys_clk and sys_clkb, but this tutorial used differential so you must also supply an inverted clock)
[image:]

-Reserve Pins: Make any pin reservations you need for LEDs, buttons, etc… here. The easiest way to do this is import a ucf file. Or just, manually handle the ucf modifications later.
[image:]

-Bank Selection: Check what banks are to be used for interfacing with the memory. This will automatically select pins and generate a ucf to the memory for you. Depending on your reserved pins you will have to select different values. If you can try to use banks 0 and 3.
[image:]

When you are finished you can view a template of how to instantiate the memory interface:

[image:]

Here is my template as a chart with some useful notes to focus your attention.
I suggest you create another module (state-machine-based) to interface to this module so that you have something easier to work with at the top level. I’ve underlined the only pins that really require much attention. Detailed desc. of pins are in tables 7-7,7-8,7-9 of the user guide.
	generated_mem_int u_generated_mem_int
 (

 .cntrl0_ddr_dq (cntrl0_ddr_dq),
 .cntrl0_ddr_a (cntrl0_ddr_a),
 .cntrl0_ddr_ba (cntrl0_ddr_ba),
 .cntrl0_ddr_cke (cntrl0_ddr_cke),
 .cntrl0_ddr_cs_n (cntrl0_ddr_cs_n),
 .cntrl0_ddr_ras_n (cntrl0_ddr_ras_n),
 .cntrl0_ddr_cas_n (cntrl0_ddr_cas_n),
 .cntrl0_ddr_we_n (cntrl0_ddr_we_n),
 .cntrl0_ddr_dm (cntrl0_ddr_dm),
 .cntrl0_rst_dqs_div_in (cntrl0_rst_dqs_div_in),
 .cntrl0_rst_dqs_div_out (cntrl0_rst_dqs_div_out),
 .sys_clkb (sys_clkb), //I would have called this clk_n
 .sys_clk (sys_clk),
 .reset_in_n (reset_in_n),
 .cntrl0_burst_done (cntrl0_burst_done),
 .cntrl0_init_val (cntrl0_init_val),//!!**documents call this init_done
 .cntrl0_ar_done (cntrl0_ar_done),
 .cntrl0_user_data_valid (cntrl0_user_data_valid),
 .cntrl0_auto_ref_req (cntrl0_auto_ref_req),
 .cntrl0_user_command_register (cntrl0_user_command_register),
 .cntrl0_user_cmd_ack (cntrl0_user_cmd_ack),
 .cntrl0_clk_tb (cntrl0_clk_tb),
 .cntrl0_clk90_tb (cntrl0_clk90_tb),
 .cntrl0_sys_rst_tb (cntrl0_sys_rst_tb),
 .cntrl0_sys_rst90_tb (cntrl0_sys_rst90_tb),
 .cntrl0_sys_rst180_tb (cntrl0_sys_rst180_tb),
 .cntrl0_user_data_mask (cntrl0_user_data_mask),
 .cntrl0_user_output_data (cntrl0_user_output_data),
 .cntrl0_user_input_data (cntrl0_user_input_data),
 .cntrl0_user_input_address (cntrl0_user_input_address),
 .cntrl0_ddr_dqs (cntrl0_ddr_dqs),
 .cntrl0_ddr_ck (cntrl0_ddr_ck),
 .cntrl0_ddr_ck_n (cntrl0_ddr_ck_n)
);
	

I
I
I
I
O
I
O
O
O
O
I
O
O
O
O
O
O
I
O
I
I
	

TO RAM
TO RAM
TO RAM
TO RAM
TO RAM
TO RAM
TO RAM
TO RAM
TO RAM
TO BOARD
TO BOARD
inverted clk
clk
set low for 200+us then high
Signify end read/wrt. burst
initialization complete
auto-refresh done
Data valid for read
Req. pause for auto-refresh
3 bit command
Command acknowledge
Satus/Test Only
Satus/Test Only
Satus/Test Only
Satus/Test Only
Satus/Test Only
write mask,may fix to 2’b00
two byte read data
two byte data to write
read/write address (25bit)
TO RAM
TO RAM
TO RAM

[image:]

Adding files for simulation
Luckily, the core generator provides you a testbench to see the operation of the module, if you need it, but more importantly it provides a model of the external RAM so that you can run a simulation.
Once we have the MIG in our project, we need to add parts so that we can simulate the DDR SDRAM. This includes a model for the DDR module that is on your boards.
-Add source
-Go to /<Project Directory>/ipcore_dir/<MIG module name>/user_design/sim/ and add all the files in this directory. When the window pops up confirming the addition of all files make sure to change the association from all to simulation. The test bench and other various files will not synthesize correctly, and can only be used for simulations.
[image:]
-Change your view to simulation, and run the testbench (sim_tb_top.v) in iSIM
If you have done everything correctly, you should see the waveforms for the connections that the MIG has. The testbench just asserts a reset signal for 200ns, just enough to reset the memory. You can modify this testbench to include the other parts of your project to test them out before you implement them in hardware.
To make sure you understand how the MIG interfaces with the DDR SDRAM, you should create a state machine that performs the following operations on the memory. You will be able to use this state machine in your project to perform reads and writes on the memory.
To create your own logic to control the memory, remove the last module in sim_tb_top.v and add your own module and modify the test bench to control it. You may want to use add the system reset signal, sys_rst_n, to that as well.
//
/* REPLACE THIS MODULE WITH YOUR OWN (YOU DON’T EVEN NEED ALL THESE SIGNALS)
 // synthesizable test bench provided for wotb designs
 my_memory_interface_test_bench_0 test_bench0 (
 .auto_ref_req (cntrl0_auto_ref_req),
 .fpga_clk (cntrl0_clk_tb), //just use system clk
 .fpga_rst90 (cntrl0_sys_rst90_tb),
 .fpga_rst180 (cntrl0_sys_rst180_tb),
 .clk90 (cntrl0_clk90_tb),
 .burst_done (cntrl0_burst_done),
 .init_done (init_done),
 .ar_done (cntrl0_ar_done),
 .u_ack (cntrl0_user_cmd_ack),
 .u_data_val (cntrl0_user_data_valid),
 .u_data_o (cntrl0_user_output_data),
 .u_addr (cntrl0_user_input_address),
 .u_cmd (cntrl0_user_command_register),
 .u_data_i (cntrl0_user_input_data),
 .u_data_m (cntrl0_user_data_mask),
 .led_error_output (error), //don't need this
 .data_valid_out (data_valid_out)
);
*/

///
Once you have the memory working with your new module, you’ll want to put separate your synthesizable module and along with the synthesizable FPGA memory controller “mem_interface_top0” in a separate top Verilog file as those are the only pieces that you will need for synthesis. You should modify the test bench to use that accordingly.
[bookmark: _GoBack]

With the recommended options above, you will be presented with a 32-bit data input. You will only need to provide one address per read or write and the generated memory controller will auto-increment the column address to perform two 16-bit writes or reads. THE READ AND WRITE TIMING DIAGRAMS DO NOT REPRESENT EVERY CONFIGURATION EXACTLY. YOU ONLY NEED TO PROVIDE ONE ADDRESS AND ONE 32-BIT DATA INPUT FOR THE CONFIGURATION WE CHOOSE.
Initialization
To use the SDRAM you must first reset and initialize the memory.
-To reset the MIG, hold the reset bar low for at least 200µs
-A clock cycle after reset goes low the put init command (3’b010) on the user_command_register (1)
-When the init_done line goes high (2), you can send your next command at anytime (3)
[image:]
Write
The controller automatically handles the both blocks of data being written and all 32-bits of data are located on cntrl0_user_input_data. In addition to the handling of the data, the MIG also handles the row, column, and block selection and integrates all 3 of these into a simple 24-bit address cntrl0_user_input_address. Since we set the burst length of 2, each burst will consist of 1 set of data.
-Put the address of where you are writing to on user_input_address, put the data you want to write on user_input_data (3), and set the write command (3’b100) on the user_command_register. (1)
-When user_cmd_ack goes high, wait for 3 clock cycles (2)(4)
-Set burst_done to high for 2 clock cycles (5)
-Set the user_command_register to NOP (3’b000) (6)
-Wait until user_cmd_ack goes low again before sending another command (7)[image:]

Read
-Put the address of where you are writing to on user_input_address and set the write command (3’b110) on the user_command_register. (1)
-When user_cmd_ack goes high, command was accepted (2)
-Once user_data_valid goes high the data is available on user_output_data (3)(4)(5)
- Set burst_done to high for 2 clock cycles (6)
-Set the user_command_register to NOP (3’b000) (7)
-Wait until user_cmd_ack goes low again before sending another command (8)
[image:]

Auto-refresh
If at any time the cntrl0_auto_ref_req goes high, you have 15 clock cycles to terminate any command or the data on the DDR SDRAM will become corrupt (due to not being able to process the autorefresh). So, when cntrl0_auto_ref_req goes high, just hold off any further operations until cntrl0_ar_done goes high. Once cntrl0_ar_done is asserted you can resume commanding the memory. Handling this issue is quite simple: just check cntrl0_auto_ref_req before starting any new commands and if it is high wait for cntrl0_ar_done to go high, otherwise just execute your desired commands as usual.

A list of interface signals can be found on page 295 of the MIG ipcore.
image3.png
4 Xilinx Memory Interface Generator

REFERENCE
DESIGN []

Options for Controller 0 - DDR SDRAM

Frequency:The lowed eguency angeis ncton of e slcted FPGApat, PGA seed race,
‘memory controller type, and docking type. Choose the dock period for the desired frequency. Refer to User 7519 | ps |133.00MHz|
S0 oo heancs e sorm]
Write Pipe Stages:MIG upors 0 o 4 ppeins for v dat, To dfalt s peles When the e

St 0 o e, e onaring e s e Paded e s o, o ol e (1 7]
selects 0 pipelines, write data should be passed through a 4 stage pipeline in the user interface.

Memory Type: Select the memory type. Parts marked with a warring symbol are not compatible with the.

frequency selcton above. FDDR2 o DDR SDRAM i chosen, slec ither Compenent or MM, Alother |Componcris s
desgns support Companent only.
Memory Parts Selectthe memory part, Prts marke with a waring symbol are ot compatie it the

frequency selection above. Find an equivalent part o create part using the "Create Custom Part” button f

b
‘Data Width: MIG supports multiples of 8 for components up to 24 bits. Note that the selection is dependent
N s e e Sl e

‘Data Mask: You will be able to enable/disable the generation of Data Mask (DM) pins using this check box.

This option can be selectable oy if the memory part you have selected has DM pins. Uncheck this box f you
would ke to not use data masks and save FPGA 1/0s that are used for DM signals.

8 XILINX, v s s

[

<Back Next> Cancel

image4.png
Y i Mermery e G == -

REFERENCE
DESIGN []

HMemory Options.

& XILINX.

Memory Options for Controller 0 - DDR SDRAM

Choose the Memory Options settings for the memory device. Settings are restrited to those supported by the controllr Consut the memory vendor
data sheet for more information.

BurstLength
Determines the maximum number of column locations that can be accessed for a given READ or WRITE command. 2(001) -
BurstType

Thecrdetn o eses i st dtrmindbesed n e s g et e e stri . ety 5]
address. _
Output Drive Strength

Sclcing educedsength vl rcduce oottt pprodnately S4parcent f he e sength.

image5.png
<] Xilinx Memory Interface Generator

REFERENCE
DESIGN []

FPGA Options.

& XILINX.

'DCM Opton
Multple dock signals are required for the memory inerface. Wit this opton set, the required dock signals il e generated from a single user
supplied dlock signal o a DCM intermal to the memory interface. Otherwise you must generate the required dock signals and connect them to the.
memory interface (see User Guide for more informaton). The latter method may allow you o overlap the clock generation with a DCM akready
avalable in your design and thus save docking resources.

useDcH

SSTL Class Option

Class IL s recommended for all SSTL signalsin memory inter faces. Honever, better signal integrity may sometimes be achieved with Class I for
‘Address & Control. IFIBIS simulations indicate that Class I superior for your appiication, select Cass Tbelow. This can be changed after generation
by modifying the UCF. Ths option changes the drive strength for Data, Address & Control.

Classfor Address and Control [Gasst 5

Debug Signals Control

This alows the debug signais (calbraton status signals) to be monitored o the ChipScope tool. Selecting tis option wil port map the debug signals
to the ChipScope modes in the design top module.

Debug Sgnals for Hemery Controllr e =
System cock

Choose the desired input dock configuration.

System Clock D =

image6.png
< Xilinx Memory Interface Generator =

REFERENCE Reserve Pns
DESIGN 1] Use this table to reserve pins that you do not want MIG to use. By default MIG wil use any avaiable pin for the memory interface i the selected banks
(next screen).The selectons below allow you toreserve specific pins for other uses.

There i o need to reserve pins n banks you wil not b selectng. The "Read UCF File” opton reads n an existing UCF fl to reserve pins aready locked
for other portions of the design. This opton can be used instead of or n additon to manually reserving pins.

Available Pins: 160 Reserved Pins: 0
b Banko
b Bank1
b Bank2
b Bank3

& XILINX.

image7.png
EEeE—— =5

REFERENCE ‘Bank Selection For Controller 0 - DDR SDRAM

DESIGN []
changes. See the User Guide for more information.

used per bark.

«Prioriy for pins n 2 selected bank s 1) Data, 2) Address/Contra, 3) System Contrl.

Choose the barks for the memory interface from the architectural view below. Generally banks i a singe column give the optimum internal tming. You
an alterthe pin selecton manualy i the generated UCF but you must Update the design ith the "Update Design” option i tis tool after making

*You can set the Vieighted Average Smuitaneous Switching Outputs (WASSO - see the selected FPGA's User Guide) to mit the number of pins.

System Control

‘Address/Control
System Control
System Clock

hddress/Control: 20/20 @ | bate: 1422 @ | Bystem Control: 4/4 @ | Bystem Clodk: 1/1 @
Banki0. i
Avaleble 10%: 35|

‘Address/Control
Data
System Control

‘Address/Control
System Control
System Clock

& XILINX.

image8.png
ISE Project Navigator (M.63c) - C\w\UMBC\Courses\CMPEA15\XilinxProjects\Lab8\LabB.xise - [generated

D Fle Edt Viw Project Soure Process Toos Window Layout Help

DAE L) DbX[wa| 2288 2RI BED"
b= SL=TLTH 56 // c
5] | View: © 48} tmplementation © [Smuiation 57 // (
& | Hierarchy =| se
-8 e N 59 //--
& € xc350e-41g320 60 gene
S| generated mem int (generted mem intxco) 61 (
& Z 62
| s
Al e
@ ; 65
&=l 66
z »| 67
| €2 Noprocesses Ruming
24 [Processes: generated_mem_int
2|5 % CORE Genertor
= T4 Manage Cores
9| 4 RegenerateCore
=| [ViewHdlLFuncionolvode

[8 ViewH0L Instantation Template

B vbraries.

image9.png
System
Clocks.
and Reset

User
Interface
Signals

sys_ck

sys_clkb

reset_in_n

ontrio_burst_done

infrastructure_top

sys._rst

sys_rst90

sys_rst180

clk90_0

clk 0

ontrlo_user_command_register

ontrio_user_data_mask

ontrio_user_input_data

ontrio_user_input_address

cntrlo_init_done

cntrio_ar_done

cntrlo_auto_ref_req

cntrio_user_cmd_ack

cntrlo_clk_tb

cntrlo_clkgo_to

cntri0_sys_rst_to

cntri0_sys rst90_tb

cntri0_sys rst180_tb

cntrio_user_data_valid

cntrlo_user_output data

top_0

cntrio_ddr_ras_n

cntrio_ddr_cas_n

ontrio_ddr_we_n

cntrio_ddr_cs_n

ontrio_ddr_cke

cntrlo_ddr_dm

ontrlo_ddr_ba

cntrlo_ddr_a

cntrio_ddr_ck

ontrio_ddr_ck_n

cntrlo_ddr_das.

cntrio_ddr_dg

ontrlo_ddr_reset_n

vooss

Memory
Device

oete

Figure 7-4: MIG Output of the DDR SDRAM Controller Design with a DCM but without a Testbench

image10.png
i Adding Source Files..

The folning allows you to see the status of the source fles being added to the project, and
allows you to specify the Design View associaton for sources which are successfuly added to

[fwore

the project
File Name Associstion

1 @ ddrmodely Simulation

2 @ ddrmodel_psrametersah Simulation

3 @ generatedme
4 @ generated.me
5 @ generated.me
6 @ generated.me
7 @ generated.me
8 @ sim.b.opw
9 @ wiredy

2ddr_gen 0.v_[Simulation
cmd_fsm 0.v_[Simulation
cmp_data 0 [Simulation
data_gen v [Simulation
test_bench 0.v Simulation

Simulation

Simulation

[work
[work
[work
[work
[work
[work
[work
[Slwork

Library.

[E | € W

CrptsEres=s 0 A=)

image11.png
sys_rst180 \

user_command_register

Yoo

@ 3

Figure 7-9: DDR SDRAM Initialization

image12.png
JPOCS——

i =i o, | 0 | 2

- X .w =X

- IR
) :
s inpu cta - D) G5 G
[T

Figure 7-10: DDR SDRAM Write Burst, Burst Lengths of Four

image13.png
AT A (AW WA WAL
/-\,g\ J’\IW./{\J’\J’«\'\I

I \ @ Al @‘ \ 1
— ‘ fc}
o = O]] e
‘ .
[) o

=]

|
user_data_valid j_h

wor_outputdata x ET) X CX CX |

Figure 7-11: DDR SDRAM Read, Burst Lenglhs of Four and Two Bursls

image1.png
e_

Select 1P

Create Coregen or Architecture Wizard P Core.

View by Functon | View by Name.

Name “ Version Status License

Communication & Networ
Debug & Verification

Nemory e Genestors
e S e
& [RAMs & ROMs,

T cMemory Genestor 42 praduction

Diiuted oy Genestor 31 Production
Sanard B ecer

Search IP Catalog:

AP versions

image2.png
N il ermory intertoce Genertor | e R

REFERENCE 'MIG Output Options.

DESIGN []
© Create Design

Select tis option to generate 2 new memory controlle. Generating @ memory controller wil reate RTL, design constrains (UCF), implementation and
Smuaton fles.

) xilinx Reference Boards
Select this option for information o specific designs for Xiin reference boards.

©) Verify UCF and Update Design and UCF
electing this feature verifies the modified U for a design aready generated through MIG. It updates the input UCF fil to be compatble with the
current version of MIG. Whie updating the UCF it preserves the pin outs of the input UCF: This option wil also generate the new design nith the
Component Name you selected n this page.

‘Component Name:

Please specify the component name for the memory interface. The design drectories wil be generated under a dectory with this name. Three.
drectories wil be created "example_design’,‘user_design” and ocs”. The user_design il contain the generated memory inerface. The.
example_design adds a simple exarmple appication connected to the generated memory interface. Note that the Component Name wil be prepended
toallof he RTL fies.

Component Name generated_mem_int

& XILINX.

